Author:
Optimization Methods Classification⚓︎
方法类型 | 方法名称 | 特性 | 应用领域 | 公式 |
---|---|---|---|---|
常微分方程数值解法 | 龙格-库塔法 | - 高精度 - 稳定性好 - 计算量相对较大 |
- 常微分方程求解 - 动力学系统模拟 - 工程和物理问题 |
4阶龙格-库塔公式(常见形式): \(y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)\) \(k_1 = hf(x_n, y_n) , k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2})\) … |
欧拉法 | - 计算简单 - 精度较低 - 时间步长敏感 |
- 常微分方程求解 - 简单物理系统模拟 |
显式欧拉法: \(y_{n+1} = y_n + hf(x_n, y_n)\) |
|
中点法 | - 使用中间点的斜率 - 精度比欧拉法更高 - 稳定性较好 |
- 常微分方程求解 - 中等精度要求问题 |
中点法公式: \(y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, y_n + \frac{h}{2} f(x_n, y_n)\right)\) |
|
偏微分方程数值解法 | 有限差分法 | - 将微分方程转化为代数方程 - 适用于偏微分方程 - 网格划分对结果影响大 |
- 偏微分方程求解 - 数值天气预报 - 流体力学 |
二阶中心差分近似(用于偏导数): \(f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}\) |
有限元方法 | - 将问题域划分为小区域 - 适用于复杂几何和边界条件 - 精度较高 |
- 偏微分方程求解 - 结构工程 - 热传导问题 |
泛化的有限元方法公式: \(\int_{\Omega} (\nabla u \cdot \nabla v - fv) \, d\Omega = 0\) |
|
优化问题方法 | 最速下降法 | - 使用函数的一阶导数 - 实现简单,适用性广 - 可能收敛速度慢 |
- 非线性方程组求解 - 机器学习参数优化 - 最小化成本函数 |
迭代公式: \(x_{n+1} = x_n - \alpha_n \nabla f(x_n)\) |
牛顿法 | - 使用函数的一阶和二阶导数 - 收敛速度快 - 需要计算Hessian矩阵 |
- 非线性方程组求解 - 优化问题 |
迭代公式: \(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\) |
|
共轭梯度法 | - 不需要存储Hessian矩阵 - 适用于大规模问题 - 仅适用于二次函数 |
- 非线性方程组求解 - 大规模优化问题 - 稀疏系统 |
迭代公式: \(x_{n+1} = x_n + \alpha_n p_n\) 其中,\(p_n\) 是共轭方向。 |
|
二分法 | - 简单且稳定 - 收敛速度相对较慢 - 需要函数在区间两端取不同符号 |
- 线性方程 & 非线性方程 - 求解实数根 - 连续函数的区间搜索 |
迭代公式: \(c = \frac{a+b}{2}\) 其中,a 和 b 是当前区间的端点。 |
|
高斯-塞德尔法 | - 收敛速度通常比雅可比法快 - 适用于大型稀疏系统 |
- 线性方程组 - 数值线性代数 |
迭代公式: \(x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right)\) |
|
雅可比法 | - 简单迭代法 - 对角线元素须非零 - 收敛速度可能较慢 |
- 线性方程组 - 数值线性代数 |
迭代公式: \(x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{\substack{j=1 \\ j \neq i}}^{n} a_{ij} x_j^{(k)} \right)\) |
|
数值积分方法 | 梯形法 | - 简单且稳定 - 适用于初等积分 - 精度一般 |
- 数值积分 - 近似求解定积分 |
梯形法公式: \(\int_{a}^{b} f(x) \, dx \approx \frac{h}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n)]\) 其中, \(h = \frac{b-a}{n}\) 。 |
Method Type | Method Name | Features | Application Fields | Formula |
---|---|---|---|---|
Numerical Methods for ODEs | Runge-Kutta Method | - High accuracy - Good stability - Relatively large computational cost |
- Solving ordinary differential equations - Dynamical system simulations - Engineering and physics problems |
4th order Runge-Kutta formula (common form): \(y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)\) \(k_1 = hf(x_n, y_n), k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2})\) … |
Euler's Method | - Simple computation - Low accuracy - Sensitive to time step |
- Solving ordinary differential equations - Simulating simple physical systems |
Explicit Euler method: \(y_{n+1} = y_n + hf(x_n, y_n)\) |
|
Midpoint Method | - Uses the slope at the midpoint - More accurate than Euler's method - Better stability |
- Solving ordinary differential equations - Problems requiring moderate accuracy |
Midpoint method formula: \(y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, y_n + \frac{h}{2} f(x_n, y_n)\right)\) |
|
Numerical Methods for PDEs | Finite Difference Method | - Converts differential equations to algebraic equations - Suitable for partial differential equations - Grid division greatly affects the result |
- Solving partial differential equations - Numerical weather prediction - Fluid mechanics |
Second-order central difference approximation (for partial derivatives): \(f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}\) |
Finite Element Method | - Divides the problem domain into small regions - Suitable for complex geometries and boundary conditions - High accuracy |
- Solving partial differential equations - Structural engineering - Heat conduction problems |
Generalized finite element method formula: \(\int_{\Omega} (\nabla u \cdot \nabla v - fv) \, d\Omega = 0\) |
|
Optimization Methods | Steepest Descent Method | - Uses the first derivative of the function - Simple to implement and widely applicable - May converge slowly |
- Solving nonlinear equations - Parameter optimization in machine learning - Minimizing cost functions |
Iterative formula: \(x_{n+1} = x_n - \alpha_n \nabla f(x_n)\) |
Newton's Method | - Uses the first and second derivatives of the function - Fast convergence - Requires the Hessian matrix |
- Solving nonlinear equations - Optimization problems |
Iterative formula: \(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\) |
|
Conjugate Gradient Method | - Does not require storing the Hessian matrix - Suitable for large-scale problems - Only works for quadratic functions |
- Solving nonlinear equations - Large-scale optimization problems - Sparse systems |
Iterative formula: \(x_{n+1} = x_n + \alpha_n p_n\) where \(p_n\) is the conjugate direction. |
|
Bisection Method | - Simple and stable - Relatively slow convergence - Requires the function to have different signs at the interval ends |
- Linear & nonlinear equations - Solving real roots - Interval search for continuous functions |
Iterative formula: \(c = \frac{a+b}{2}\) where a and b are the current interval endpoints. |
|
Gauss-Seidel Method | - Generally faster convergence than the Jacobi method - Suitable for large sparse systems |
- Solving linear equations - Numerical linear algebra |
Iterative formula: \(x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right)\) |
|
Jacobi Method | - Simple iterative method - Diagonal elements must be non-zero - May have slow convergence |
- Solving linear equations - Numerical linear algebra |
Iterative formula: \(x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{\substack{j=1 \\ j \neq i}}^{n} a_{ij} x_j^{(k)} \right)\) |
|
Numerical Integration Methods | Trapezoidal Rule | - Simple and stable - Suitable for elementary integrals - Moderate accuracy |
- Numerical integration - Approximating definite integrals |
Trapezoidal rule formula: \(\int_{a}^{b} f(x) \, dx \approx \frac{h}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n)]\) where \(h = \frac{b-a}{n}\) |